WHAT ARE YOU LOOKING FOR?
Баннер на внутренней странице
Интеллектуальная сортировочная машина с искусственным интеллектом
  • Что такое сортировщик руды: представляем передовые технологии сортировки горнодобывающей промышленности Что такое сортировщик руды: представляем передовые технологии сортировки горнодобывающей промышленности Nov 11, 2023
    Ан сортировщик руды — специализированная машина, используемая в горнодобывающей промышленности для отделения ценной руды от примесей. Используя такие методы, как датчики, камеры и алгоритмы автоматической сортировки, он эффективно идентифицирует и разделяет различные типы руды на основе их физических и химических свойств. Данная технология значительно повышает эффективность процесса добычи за счет уменьшения количества примесей, нуждающихся в переработке, и повышения концентрации ценной руды. Сортировщики руды могут обеспечить повышение производительности и экономической эффективности в горнодобывающей промышленности.   Типы сортировщиков руды   1. Сортировщик цветной руды Использует технологию распознавания цвета, чтобы различать различные минералы на основе их цветовых свойств. Этот сортировщик эффективен для быстрой идентификации и разделения частиц руды. 2. Интеллектуальная сортировочная машина с искусственным интеллектом Использует возможности искусственного интеллекта для анализа и классификации руды на основе заранее определенных параметров. Эта передовая технология повышает точность и эффективность сортировки. 3. Рентгеновский интеллектуальный сортировщик  Использует рентгеновскую технологию для проникновения и анализа частиц руды. Этот сортировщик особенно полезен при идентификации и разделении минералов с отличными характеристиками поглощения рентгеновских лучей. 4. Сортировщик минерального песка Эта машина, специализирующаяся на сортировке минерального песка, эффективно отделяет ценные минералы от окружающих отходов благодаря их уникальным физическим свойствам.   5. Сортировщик ультрафиолетовых лучей Использует ультрафиолетовые лучи для обнаружения и классификации частиц руды. Этот сортировщик эффективен при идентификации минералов, которые проявляют специфическое взаимодействие с ультрафиолетом.   6. Инфракрасный сортировщик Работает путем анализа инфракрасного спектра частиц руды, позволяя отделять ценные минералы от отходов на основе их уникальных инфракрасных сигнатур.   Принцип работы оптического сортировщика руды Материал Освещение Частицы руды освещаются с использованием различных источников света, таких как видимый свет, рентгеновские лучи, ультрафиолетовые лучи или инфракрасный свет.   Оптические датчики Специализированные датчики улавливают отраженный или проходящий свет от освещаемых частиц.   Спектральный анализ Оптическая система анализирует спектр света, взаимодействующего с каждой частицей, определяя характерные спектральные закономерности, связанные с различными минералами.   Алгоритмическая обработка Передовые алгоритмы обрабатывают собранные оптические данные, быстро принимая решения о природе каждой частицы, различая ценные материалы и отходы.   Сортировочный механизм  На основании анализа активируется сортировочный механизм, который отделяет ценную руду от отходов, обеспечивая эффективную переработку.   Операция в реальном времени Весь процесс происходит в режиме реального времени, что позволяет быстро и точно отделить ценные полезные ископаемые от неценных.   Преимущества технологии сортировки руды   1. Повышенная эффективность Отделяя ценные породы от отходов перед подачей на мельницу, сортировщики руды повышают общую эффективность измельчения, снижая необходимость энергоемкого измельчения.   2. Экологические преимущества Сокращение образования отходов, в том числе хвостохранилищ, сводит к минимуму воздействие горнодобывающих предприятий на окружающую среду. Снижение потребления воды способствует устойчивой практике добычи полезных ископаемых.   3. Улучшение качества продукции  При сортировке руды удаляются низкосортные или загрязненные породы, что приводит к повышению среднего качества руды и увеличению выхода ценных металлов в конечном продукте.   4. Экономия средств Снижение затрат на переработку достигается за счет переработки руды с более высоким средним содержанием и меньшим количеством отходов, что приводит к значительной экономии для горнодобывающих компаний.   5. Увеличение использования ресурсов Сортировка руды позволяет извлекать ценные металлы из ранее нерентабельных рудных месторождений, улучшая использование ресурсов и общее производство.
  • Что такое фотоэлектрическая сортировка руды Что такое фотоэлектрическая сортировка руды May 27, 2024
    Фотоэлектрическая сортировка руды — это передовая технология сортировки минералов. Он использует фотоэлектрические датчики для обнаружения и идентификации минералов на основе фотоэлектрических свойств минералов для достижения эффективной сортировки минералов. Эта технология имитирует процесс ручного отбора и значительно повышает эффективность и точность переработки полезных ископаемых за счет сочетания машин и электричества.В процессе фотоэлектрической сортировки руды фотоэлектрический датчик излучает на минерал луч света. Минералы поглощают энергию света и отражают ее. Различные типы минералов имеют разные спектральные характеристики поглощения и отражения из-за различий во внутреннем строении и составе. Фотоэлектрические датчики могут точно идентифицировать минералы, фиксируя спектральные особенности отражения.Технология фотоэлектрической сепарации руд широко применяется в процессе разделения различных руд, особенно при первичном отборе пегматитовых кварцевых жильных руд. Он может частично заменить традиционный метод ручного отбора, снизить трудоемкость и повысить эффективность производства. Кроме того, технология фотоэлектрического разделения руды также широко используется в таких сценариях, как обработка отходов перед захоронением, обогащение низкосортной руды и сортировка попутных руд нескольких типов минералов.Предварительная обработкаинг переработка отходов является одним из важных применений технологии фотоэлектрического разделения руды. В процессе добычи и переработки руды часто образуются большие объемы пустой и низкосортной руды. С помощью технологии фотоэлектрической сепарации эти бесполезные или малоценные минералы можно эффективно отделить, тем самым уменьшая количество пустой породы в последующих процессах очистки и снижая общую стоимость переработки полезных ископаемых.Еще одной важной областью применения является обогащение бедных руд. Многие руды не могут удовлетворить потребности экономической добычи из-за их низкого содержания. С помощью технологии фотоэлектрического разделения руды полезные компоненты в этих низкосортных рудах могут быть эффективно обогащены, а содержание руд может быть улучшено, что делает их экономически ценными для добычи полезных ископаемых.Еще одной важной областью применения является обогащение бедных руд. Многие руды не могут удовлетворить потребности экономической добычи из-за их низкого содержания. С помощью технологии фотоэлектрического разделения руды полезные компоненты в этих низкосортных рудах могут быть эффективно обогащены, а содержание руд может быть улучшено, что делает их экономически ценными для добычи полезных ископаемых.Сортировка мультиминеральных попутных руд также является важным сценарием применения технологии фотоэлектрического разделения руды. В рудах, связанных с несколькими типами минералов, различия в свойствах разных минералов могут усложнить переработку полезных ископаемых. Благодаря технологии фотоэлектрического разделения различные минералы могут быть эффективно разделены, что снижает сложность переработки полезных ископаемых и повышает эффективность переработки полезных ископаемых.После многих лет тщательных исследований компания Mingde Optoelectronics Technology Co., Ltd. не только разработала традиционный фотоэлектрический сортировщик цветов, но и выпустила усовершенствованный фотоэлектрический сортировщик с искусственным интеллектом. Интеллектуальная сортировочная машина MIINGDE AI берет на себя ведущую роль в использовании средств искусственного интеллекта, таких как глубокие сверточные нейронные системы. сеть (CNN) анализировать и обрабатывать изображения материалов в области фотоэлектрической сортировки в видимом свете и автоматически извлекать многомерные характеристики материалов для создания базы данных через локальное соединение CNN, распределение веса, многосверточное ядро и другие методы в процессе обучения, а также Эффект сортировки намного лучше, чем у традиционной фотоэлектрической сортировки.Технология фотоэлектрического разделения руд играет важную роль в области переработки полезных ископаемых благодаря своей высокой эффективности и точности. Считается, что благодаря постоянному развитию науки и техники и постоянным инновациям фотоэлектрических технологий технология фотоэлектрического разделения руды будет более широко использоваться и развиваться в будущем.
  • Комплексное использование угля и пустой породы Комплексное использование угля и пустой породы Aug 03, 2024
    Уголь и пустая порода — это два разных вещества, образующихся при добыче и переработке угля. Уголь — это ископаемое топливо, которое в основном состоит из таких элементов, как углерод, водород, кислород, азот, сера и фосфор, и имеет высокую плотность энергии и теплоту сгорания. Уголь обычно черного цвета, имеет относительно плотную текстуру и содержит меньше примесей. Напротив, пустая порода представляет собой твердые отходы, образующиеся при добыче и сортировке угля, которые содержат более низкое содержание углерода и более высокую зольность. Обычно он серого или темно-серого цвета и содержит больше примесей. Плотность пустой породы ниже, чем у угля, поэтому в том же объеме она весит больше. Кроме того, твердость пустой породы выше, чем у угля, и ее нелегко разбить вручную.С другой стороны, в прошлом пустой мусор часто рассматривался как свалка отходов из-за его более низкой энергетической ценности и более высокого потенциала загрязнения окружающей среды. Однако с улучшением комплексного использования ресурсов и осведомленности об охране окружающей среды была разработана технология комплексной утилизации пустой породы, и ее применение в производстве строительных материалов, заполнении выработанных пространств, мелиорации земель и производстве химической продукции постепенно расширяется.Если взять в качестве примера сферу строительных материалов, то пустая каменная порода имеет следующие основные области применения:Производство цемента: пустая каменноугольная порода может использоваться в качестве сырья для производства обычного силикатного цемента, специального цемента и безклинкерного цемента, а также частично или полностью заменять глину для приготовления цементного сырья.Производство спеченного кирпича: спеченный кирпич из угольной пустой породы имеет хорошее качество и однородный цвет и является широко используемым строительным материалом.Производство легкого заполнителя: Легкий заполнитель представляет собой пористый заполнитель, используемый для снижения относительной плотности бетона. Для производства таких материалов можно использовать пустую породу угля.Производство асбеста из пустой породы угля: Асбест из пустой породы угля, изготовленный из пустой породы угля и извести в качестве сырья и расплавленный при высокой температуре, является строительным материалом.Производство блоков: пустая каменная порода также может использоваться для производства строительных материалов, таких как блоки.Производство других строительных материалов: По минеральному составу пустая каменноугольная порода может использоваться как кремнистое сырье или алюминиевое сырье, применяется при производстве многих спеченных керамических (фарфоровых) строительных материалов.Производство химической продукции: пустую породу можно использовать для производства химических продуктов, таких как кристаллический хлорид алюминия, жидкое стекло и сульфат аммония.Обратная засыпка и рекультивация: пустую породу можно использовать для заполнения зон проседания угольных шахт и открытых карьеров для рекультивации земель.Кроме того, у пустой породы есть следующие удобные приложения:Преобразование пустой породы в органическое удобрение. Благодаря специальной биотехнологической обработке пустую породу можно превратить в биологические органические удобрения для повышения продуктивности почвенных экосистем. Эта технология не только обеспечивает использование ресурсов пустой породы, но также помогает улучшить качество почвы и способствовать устойчивому развитию сельского хозяйства.Высокорентабельное использование пустой породы: после измельчения, варки, сортировки и других технологических процессов пустая порода может быть использована для производства продуктов с высокой добавленной стоимостью, таких как катализаторы, пигменты и наполнители. Эти продукты широко используются во многих областях, таких как производство пластмасс, резины и покрытий, обеспечивая использование ресурсов и переработку отходов.Технология заполнения цементацией вскрышных пород: это технология, при которой пустая порода вводится в качестве наполнителя в зону разделения вскрышных пород посредством бурения грунта, что эффективно предотвращает и замедляет проседание грунта. Эта технология фундаментально решает проблему переработки пустой породы на угольных шахтах, экономит затраты на обработку и обеспечивает новое решение для утилизации пустой породы.Для повышения комплексной рентабельности угля и пустой породы разделение угля и пустой породы особенно важно как важный этап в процессе переработки угля.Ниже приведены некоторые современные методы разделения угля и пустой породы:1. Система разделения пустой породы с вибрационным ситом. Путем установки системы разделения пустой породы с вибрационным ситом на подземной централизованной ленте достигается эффективное разделение угля и пустой породы. Эта система может осуществлять прямую загрузку и подъем пустой породы, уменьшать подъем главного вала и промывку пустой породы на углеобогатительной фабрике, уменьшать зольность промытого угля и повышать степень извлечения сырого угля.Принцип работы этой системы основан на вибрационной механике и принципах просеивания. В этом процессе вибросито приводится в движение двигателем, заставляя корпус сита вибрировать с высокой частотой, и материал прыгает по поверхности сита. Из-за различных физических свойств угля и пустой породы их состояние движения на поверхности вибросита также различно, что приводит к эффективному их разделению.В частности, когда поверхность сита вибрационного сита вибрирует, крупные частицы материала будут выбрасываться над поверхностью сита по инерции, а мелкие частицы материала будут падать вниз через сито. Таким образом разделяются материалы с частицами разного размера. В конструкции вибросита обычно учитываются различия в характеристиках угля и пустой породы, включая их плотность, влажность и форму, чтобы обеспечить эффективную сортировку.Система сортировки пустой породы с вибрационным ситом в основном состоит из ситового короба, сита, вибратора, пружины, гасящей вибрации, и других компонентов. Внутри ситового короба имеется несколько слоев сита, каждый из которых соответствует различным требованиям к размеру частиц. Вибратор генерирует силу вибрации, заставляя ситовую коробку и сито вибрировать с высокой частотой, тем самым обеспечивая разделение материала. Пружина, гасящая вибрации, используется для поглощения вибрации, создаваемой виброгрохотом во время работы, и уменьшения передачи вибрации на землю или другое оборудование.Рабочий процесс обычно включает в себя три этапа: подачу, сортировку и выгрузку. Сначала смесь сырого угля и пустой породы подается в загрузочный порт вибрационного сита. Затем начинает работать вибросито, и материал просеивается на поверхности вибросита. Наконец, просеянный уголь и пустая порода выгружаются с обеих сторон грохота соответственно для завершения процесса сортировки.В практическом применении вибрационный грохот система сортировки мусора может быть оптимизирован и улучшен в соответствии с конкретными условиями различных угольных шахт для повышения эффективности сортировки и снижения энергопотребления. Например, частоту и амплитуду вибрации вибрационного сита можно регулировать в соответствии с различными характеристиками материала, а точность просеивания можно повысить за счет улучшения конструкции сита. Кроме того, внедрение интеллектуальных систем управления позволяет еще больше повысить автоматизацию и стабильность системы.2. Система сортировки пустой породы, основанная на рентгеновском и машинном зрении: используйте технологии рентгеновского и машинного зрения для идентификации угля и пустой породы, расчета значения толщины угля и пустой породы с помощью алгоритма обработки изображений и объединения толщины идентифицированного угля и пустой породы. с помощью визуальных изображений с изображениями ослабления рентгеновских лучей для получения информации о решении по распознаванию. Применение технологий рентгеновского излучения и машинного зрения при сортировке пустой породы угля в основном включает в себя следующие этапы:Использование системы визуализации: используйте систему рентгеновской визуализации для сканирования угля и пустой породы, чтобы получить информацию о внутренней структуре и составе материала. Эта информация обычно проявляется в том, что разные материалы в разной степени поглощают рентгеновские лучи, создавая тем самым контраст при визуализации.Распознавание и анализ изображений: с помощью технологии машинного зрения изображения, полученные системой рентгеновской визуализации, обрабатываются и анализируются. Алгоритмы глубокого обучения используются для обучения моделей автоматическому определению характеристик угля и пустой породы, таких как цвет, плотность, форма, текстура и т. д.Автоматическая сортировка: после идентификации угля и пустой породы система управления направляет привод, например, ветрогенератор высокого давления или роботизированную руку, для отделения пустой породы от угля. Этот процесс позволяет добиться высокой эффективности и точности сортировки, снизить трудозатраты и улучшить качество сортировки.Интеллектуальная система: современные системы сортировки пустой породы не только полагаются на аппаратное оборудование, но также объединяют анализ данных и алгоритмы искусственного интеллекта, благодаря чему система обладает возможностями самообучения, может корректировать стратегию сортировки в соответствии с различными характеристиками качества угля и условиями окружающей среды, а также реализовать автоматическую работу.Сочетание этих технологий представляет собой передовой уровень в области сортировки угля, что помогает улучшить восстановление ресурсов и снизить загрязнение окружающей среды.3. Фотоэлектрическая система сортировки: Технология фотоэлектрической сортировки пустой породы — это современный метод сортировки угля и пустой породы с использованием фотоэлектрических датчиков и технологии обработки изображений. Эта технология позволяет быстро и точно идентифицировать уголь и пустую породу, тем самым улучшая качество угля и общий коэффициент использования ресурсов. Системы фотоэлектрической сортировки обычно включают в себя такие компоненты, как источники света, детекторы, блоки обработки изображений и системы управления. Сканируя материалы на конвейерной ленте, система может обнаружить различия в спектральных характеристиках разных веществ и соответствующим образом их классифицировать. Последние исследования и применения показывают, что технология фотоэлектрической сортировки пустой породы развивается в направлении интеллектуальности и высокой эффективности. Например, в исследовании была предложена интеллектуальная система сортировки отходов, основанная на глубоком обучении с подкреплением, которая может обеспечить точность идентификации отходов более 95% и эффективность сортировки более 90%. Кроме того, проводятся исследования ключевых общих технологий многоруких интеллектуальных роботов-сортировщиков пустых пород, которые достигли стабильного захвата динамических пустых пород, передаваемых на высокой скорости манипулятором, что повышает эффективность сортировки и возможности совместной работы системы.Преимущество оптоэлектронная технология сортировки Основная особенность пустой породы заключается в том, что она может осуществлять бесконтактную сортировку, уменьшать повреждение материалов, а также уменьшать пыль и шумовое загрязнение. В дополнение интеллектуальная система сортировки может самообучаться и оптимизировать стратегию сортировки, чтобы повысить точность и эффективность сортировки. Применение этих технологий помогает добиться эффективного использования угольных ресурсов и защиты окружающей среды, что соответствует тенденции развития зеленого строительства шахт.Кроме того, применение технологии оптоэлектронной сортировки также может снизить частоту отказов оборудования, снизить затраты на управление, оптимизировать технологический процесс и повысить степень извлечения чистого угля, что напрямую отражается на повышении эффективности производства. Сочетание интеллектуального освещения и платформы управления размещением персонала еще больше повышает уровень интеллекта углеобогатительных фабрик и повышает стандарты безопасного производства. Интеллектуальная сортировочная машина с искусственным интеллектом запущенный Аньхойская компания оптоэлектронных технологий Mingde, Ltd.. использует технологии глубокого обучения и машинного зрения для автоматического выявления и сортировки пустой породы угля. Эта технология позволяет значительно повысить эффективность сортировки, снизить затраты на рабочую силу и уменьшить загрязнение окружающей среды.
  • How to Choose An Ore Color Sorter? How to Choose An Ore Color Sorter? Aug 10, 2024
    The ore color sorter uses the principle of photoelectric sorting and the difference in the optical properties of the material for fine sorting. It can process a large amount of material in a short time, and has high sorting accuracy, which helps to improve the grade of the ore. CCD Sensor Based Ore Color Sorter   The color sorting process does not require the addition of chemical agents, which reduces environmental pollution and energy consumption, and meets the environmental protection requirements of modern mining. The ore color sorter with a high degree of intelligence can adapt to the changing properties of the ore, realize remote control and automatic operation, and reduce labor costs and downtime. With the development of science and technology, the technical performance of ore color sorters has been continuously improved, and more sensing technologies have been integrated, such as near-infrared spectroscopy analysis and thermal imaging, to achieve a more comprehensive and in-depth ore quality judgment. Since the ore color sorter has so many advantages, how should we choose a suitable color sorter? Generally speaking, when choosing an ore color sorter, you need to consider the following key factors: Determine the needs: Determine the appropriate type of color sorter based on your production requirements, sorting effect, applicable particle size range, sorting type, equipment stability, service life and budget. Technical performance: Choose a color sorter with advanced technology and stable performance, including the stability of the optical system, the advancement of the image processing algorithm, and the durability of the equipment. Brand and manufacturer reputation: Consider the brand's market reputation and after-sales service system, and choose manufacturers that can provide long-term technical support and quick response services. Equipment adaptability: Choose a color sorter that can adapt to different working environments and material characteristics, so as to maintain high efficiency and high precision under changing production conditions. Cost-effectiveness: Under the premise of meeting technical and performance requirements, choose a cost-effective color sorter to ensure the return on investment. Field investigation: If possible, go to the manufacturer's or existing users' site for an inspection and see the actual working effect of the color sorter with your own eyes, which will help verify the performance of the equipment and the manufacturer's service quality. Customization capability: Consider whether the manufacturer can provide customized services to meet specific material sorting needs.   Color Sorter After considering these factors, we will begin to understand the categories of ore color sorters. The main classification of ore color sorters can be divided according to different technical and application characteristics. The following are some common classification methods: Classification by technology: Traditional photoelectric color sorter: Use basic photoelectric sensors for color detection and sorting. CCD technology color sorter: Use charge coupled device (CCD) as an image sensor to provide higher resolution color recognition. Infrared technology color sorter: Use infrared to detect the difference in thermal radiation of ore for sorting. X-ray color sorter: Use X-rays to penetrate the ore and sort according to density differences. Classification by light source: LED light source color sorter: Use light-emitting diodes (LEDs) as more energy-saving and long-life light sources. Microwave light source color sorter: Use microwaves to excite ore to emit light for special types of color sorting. X-ray color sorter: Use X-rays as a light source, suitable for sorting occasions that require penetration. Classification by rack: Waterfall: The material flow is similar to a waterfall, suitable for continuous operation. Crawler type: the material moves on the crawler, which is suitable for sorting a variety of materials. Classification by material: Special color sorter: a color sorter designed for a specific type of ore or material, such as rice color sorter, grain color sorter, tea color sorter, etc.   Color Sorter These classifications reflect the diversity of ore color sorters in different technologies and application scenarios. We can choose the appropriate color sorter model according to the actual ore characteristics and processing requirements. The ore color sorter independently developed by Hefei Mingde Optoelectronics Technology Co., Ltd. has the following advantages: 1. The independently developed software system and closed whole machine structure, the main internal components are all imported components, which can adapt to the requirements of high dust, high pollution, high corrosion and other environments in the industrial and mining industries, with a wider range of applications and longer life. 2. The 32-bit true color image processing method is adopted, and mathematical morphology is applied based on the HSI color space to achieve better sorting effect and improve the flexibility and sorting ability of the color sorter operation. 3. High-precision full-color linear array CCD sensor technology can detect subtle color differences of about 0.02mm; according to the different characteristics of the ore, different processing methods are used to ensure the accurate identification of ore and other selected materials. 4. The device has high output and high precision. The output of some models has exceeded 40 tons/hour, which is 4-5 times that of similar manufacturers in China. It is suitable for large and medium-sized mining companies to meet the requirements of high output and high precision in mineral processing. 5. The range of selectable materials is large, and the size of the sorted materials ranges from 16 mesh to 4 cm, which avoids the repeated crushing adopted by users for the use of color sorting machines, reduces breakage and reduces resource waste. 6. Double-layer crawler flexible material conveying, higher color sorting accuracy and low carry-out ratio. 7. The first manufacturer to develop and launch large and small particles at the same time, one color sorter can meet the requirements of simultaneous sorting of materials with large specifications. 8. The vibrating feeding part and the main part of the equipment adopt a split structure to avoid the influence of vibration generated during the feeding process on the host, making the equipment run more stable. 9. Unique modular design, automatic dust removal and automatic spraying combined with self-maintenance function ensures the continuous and long-term working state of the equipment. 10. The parts of the machine body that contact the material are equipped with a protective layer, which has the characteristics of wear resistance, corrosion resistance, and easy replacement, ensuring the long service life of the whole machine. At the same time, according to customer needs, the company can provide specific machine customization services. In addition, through years of dedicated research, the company has introduced AI technology and big data technology in the field of photoelectric sorting. The self-developed AI intelligent sorting machine has higher sorting accuracy and can sort more types of ores. In addition, the after-sales service provided by the company is also very complete. After the customer purchases the machine, we will arrange special technicians to install and debug locally, provide a full set of operation training for customer employees, ensure the delivery and normal use of the machine, and let customers rest assured. In general, when choosing a color sorter, paying attention to the strength and after-sales service of the color sorter manufacturer is crucial to ensure the efficient operation of the equipment and return on investment. When choosing a color sorter, priority should be given to manufacturers with a good market reputation, strong technical background and a complete after-sales service system.
  • Industrial Use and Sorting of Gypsum Industrial Use and Sorting of Gypsum Aug 17, 2024
    Gypsum is a non-metallic mineral with calcium sulfate as the main component. It is usually white or colorless transparent crystals and has a wide range of application value. The formation of gypsum is closely related to geological action and is usually formed in a sedimentary environment or hydrothermal activity. In a sedimentary environment, gypsum can be precipitated from calcium sulfate in seawater or lake water; in hydrothermal activity, gypsum can be formed by cooling and crystallizing hydrothermal fluid containing calcium sulfate underground. Formation process According to the genesis and mineral composition of gypsum, it can be divided into sedimentary gypsum, hydrothermal gypsum and replacement gypsum. Among them, sedimentary gypsum is the most common type, with layered, quasi-layered and lens-shaped forms. Gypsum is widely distributed around the world, especially in Asia, Europe and North America, where reserves and production are relatively concentrated. Asia is one of the main distribution areas of gypsum, especially China, Iran and Thailand, which have more gypsum resources. China has abundant gypsum resources, which are distributed in many provinces across the country. Among them, Shandong Province has particularly outstanding gypsum ore reserves, accounting for 65% of the country's total reserves. Europe is also an important distribution area for gypsum mines. France, Germany, Spain and other countries have a large number of gypsum mine resources. Among these countries, France's gypsum mine production ranks among the top in Europe. North America, especially the United States, is one of the world's largest gypsum producers. The gypsum deposits in the United States are distributed in 22 states, with a total of 69 mines, and the largest production area is Fort Dodge, Iowa. In addition to the above-mentioned regions, countries such as Australia, India and the United Kingdom also have a certain scale of gypsum mine resources. The main component of gypsum ore is calcium sulfate (CaSO4), which usually exists in the form of dihydrate, that is, gypsum (CaSO4·2H2O). Gypsum belongs to the orthorhombic crystal system, and the crystals are plate-shaped or fibrous. The chemical properties of gypsum are stable and it is not easy to react chemically with other substances. However, at high temperatures, gypsum can react with alumina to form calcium aluminum silicate and other compounds. In addition, gypsum can react with acidic substances such as hydrochloric acid to produce sulfur dioxide gas and water. The solubility of gypsum decreases with increasing temperature. It has a low solubility in water, but can be dissolved by acids, ammonium salts, sodium thiosulfate and glycerol. When gypsum is heated at different temperatures, there are three stages of expelling crystal water: 105~180℃, first one water molecule is expelled, and then half of the water molecule is immediately expelled, turning into calcined gypsum, also known as gypsum or semi-hydrated gypsum. 200~220℃, the remaining half of the water molecule is expelled and turned into type III anhydrite. At about 350℃, it turns into type II gypsum Ca[SO4]. At 1120℃, it further turns into type I anhydrite. Melting temperature is 1450℃. The microporous structure and heating dehydration of gypsum and its products make it have excellent sound insulation, heat insulation and fire resistance. As a multifunctional mineral, gypsum is widely used in construction, medicine, agriculture, chemical industry and many other fields. Gypsum plays an important role in the medical, construction, sculpture and other industries with its excellent properties, such as good plasticity, stability, high thermal stability and chemical stability. In the field of construction, gypsum is mainly used for indoor partitions, ceilings, wall materials, etc. Gypsum board is widely used because of its light weight, high strength and easy processing. It can be used as a partition wall, interior wall material, and can also be used to make furniture. In addition, gypsum blocks are also a lightweight and environmentally friendly building material suitable for partition walls and interior walls. In the medical field, gypsum is used to make plaster bandages, fixtures, etc. The fast coagulation and hardening and fast strength growth of gypsum make it an ideal material for post-fracture fixation. In the chemical industry, gypsum can be used as a raw material for the production of sulfuric acid and cement, and can also be used as a quick-acting nitrogen fertilizer in fertilizer production. In addition, gypsum can also be used as a chemical filler in the industrial production of plastics, rubber, coatings, etc. In the agricultural field, medium gypsum can be used as a soil conditioner to adjust the pH of the soil and improve the fertility of the soil. Gypsum is also used in the field of sculpture, and artists use the plasticity of gypsum to create various works of art. In food processing, gypsum powder can be used as a food additive for tofu making, tablet production, etc. With the advancement of science and technology and in-depth research on the properties of gypsum, the application field of gypsum is still expanding. It is particularly noteworthy that as a renewable resource, the use of gypsum in building materials increasingly emphasizes environmental protection and sustainability. For example, industrial by-product gypsum such as desulfurized gypsum and phosphogypsum are reused in building materials, which not only reduces the generation of waste, but also promotes the recycling of resources. There are two main methods of mining gypsum mines: open-pit mining and underground mining. Open-pit mining is suitable for shallow and large-scale deposits. The ore is mined by stripping the covering and mining operations. Underground mining is suitable for deep and small-scale deposits. The ore is mined by opening up tunnels and mining operations. The processing of gypsum mines mainly includes crushing, beneficiation, grinding, calcination and other processes. Crushing is to break the raw ore into small pieces. Crusher such as jaw crusher is used to break the ore into small pieces for subsequent processing. The sorting process of gypsum ore includes many methods: Manual sorting: suitable for small-scale and low-production mining enterprises. Workers sort according to the color and shape of the ore. Heavy medium separation: sorting according to the density difference between the ore particles, suitable for the sorting of coarse-grained gypsum ore. Flotation method: sorting by using the difference in physical and chemical properties between gypsum ore and impurities. By adding flotation agent, gypsum ore floats to the surface of the slurry under the action of bubbles and is separated from impurities. Photoelectric separation: sorting by using the difference in optical properties between ore and impurities. Useful ore and waste rock are separated by photoelectric separator. This method has the advantages of high efficiency and precision, and is suitable for large-scale and high-precision occasions. CCD Sensor Based Ore Color Sorting Machine Mingde Optoelectronics Co., Ltd. was established in 2014. For more than 10 years, it has been professionally developing, designing, manufacturing and selling intelligent sorting equipment for mining. The ore color sorters and artificial intelligence sorters it produces can accurately sort gypsum ore. AI Sorting Machine Among them, the AI ore sorter introduces artificial intelligence technology and big data technology in the field of optoelectronics. It accurately extracts the surface features of ore and impurities such as texture, gloss, shape, color, etc., and forms a model through deep learning. In the subsequent sorting process, the sorted ore is compared and identified, instructions are issued, and pneumatic force is used for precise separation. Practice has proved that the sorting effect of AI intelligent sorting machine is far better than that of traditional optoelectronic ore sorting machine. Heavy Duty AI Ore Sorting Machine Grinding is a step to further reduce the particle size of gypsum to meet the needs of subsequent processing or application. It is usually carried out using equipment such as ball mills. Calcination is to remove moisture and impurities in gypsum and improve its purity and stability. The calcination process includes dry and wet methods. The appropriate process can be selected according to different needs and product requirements. With the advancement of science and technology, especially the development of optoelectronic mineral processing technology, the sorting efficiency and accuracy of gypsum ore have been significantly improved. As a versatile building material, gypsum plays an indispensable role in many fields of modern society. From construction to medicine, to chemical industry and agriculture, the application of gypsum shows its diversity and practicality. With the deepening of gypsum research, the application of gypsum may be more extensive in the future, and it will also pay more attention to environmental protection and sustainability.
  • Industrial Application and Sorting Method of Brucite Industrial Application and Sorting Method of Brucite Aug 20, 2024
    I. Overview Today we will learn about brucite. Brucite is an important non-metallic mineral, belonging to the hydroxide ore. Its main component is magnesium hydroxide (Mg(OH)2), which is one of the minerals with a high magnesium content in nature. II. Morphology and Characteristics Brucite is usually a flake or fibrous aggregate, mostly white or light green, colorless and transparent, with glass luster and pearl luster. Its hardness is about 2.5-3, and its relative density is in the range of 2.369-2.39. The chemical properties of brucite are stable, it is easily soluble in hydrochloric acid, it can release water vapor when heated, and it can be converted into other forms of magnesium compounds under certain conditions. III. World Distribution The distribution of brucite in the world is not uniform, mainly concentrated in the following countries and regions: China: China is one of the countries with the richest brucite resources in the world, especially in Fengcheng, Liaoning, Ningqiang, Shaanxi, Ji'an, Jilin, Qilian Mountains, Qinghai, Shimian, Sichuan, Xixia, Henan, and Kuandian, Liaoning. Among them, Liaoning Fengcheng has the highest reserves, reaching 10 million tons, Shaanxi Ningqiang area has proven brucite reserves of 7.8 million tons, and Jilin Ji'an has proven brucite reserves of 2 million tons. Russia: Russia is also a country with abundant brucite resources, especially in the Kulidur area in the south of Xiaoxing'anling, where there are large-scale brucite deposits. Canada: Canada's brucite resources are mainly distributed in Ontario, Quebec and other places. The United States: The brucite resources in the United States are mainly distributed in Nevada, Texas and other places. North Korea: North Korea's brucite resources are mainly distributed in the Bokionton area. Norway: Norway's brucite resources are also distributed to a certain extent. IV. Market Application Brucite has a wide range of applications in many fields due to its unique physical and chemical properties, especially in refractory materials, environmental protection, chemical industry and other fields, showing great potential. In the field of refractory materials, brucite is widely used in the production of refractory materials such as refractory bricks, refractory coatings and lining materials due to its high magnesium content and good refractoriness. Especially in the steel industry, heavy-burned magnesia (brucite) made of brucite is widely used due to its high density (>3.55 g/cm³) and high refractoriness (>2800°C). In the field of environmental protection, brucite can be used for wastewater treatment, especially for the removal of heavy metal ions such as nickel, copper, cadmium, manganese and chromium. In addition, it can also be used as a neutralizing agent for acidic wastewater, and there is a great demand for treating soil contaminated by acid rain and adjusting soil pH. Brucite can also be used as a flue gas desulfurization agent to reduce the harm of high mercury and high sulfur fuels to the environment. In the field of chemical products, brucite can be used as filler and coating for chemical products, especially in the papermaking industry, brucite can be used as filler to improve the whiteness and quality of paper. In addition, brucite also has important applications in the preparation of magnesium chloride, magnesium oxide, etc. In the field of flame retardant materials, brucite is used as a flame retardant in the plastics industry due to its halogen-free, non-toxic and highly efficient flame retardant properties. It can effectively absorb heat, reduce the temperature of the combustion system, and slow down the burning rate of the material. The flame retardant mechanism of brucite is that it decomposes and releases crystal water at high temperature, absorbs heat, and reduces the concentration of combustible gas, thereby playing a flame retardant role. In other fields, brucite is also widely used.Brucite is also used to prepare various composite materials, such as composite materials combined with silicon, phosphorus, nitrogen and other elements to improve their performance. In agriculture, brucite can be used to treat beet juice as a decolorizer. In addition, brucite can also be used as a catalyst carrier and catalyst to play a role in chemical reactions. V. Purity and Quality Determination of Brucite As an important industrial mineral, its purity and quality are directly related to the performance and quality of the final product. High-purity brucite can not only improve the performance and quality of the product, but also reduce production costs and improve the market competitiveness of enterprises. Therefore, ensuring the purity and quality of brucite is an important prerequisite for the development of the industry. Generally, brucite can be divided into three grades according to the content of magnesium oxide, as shown in the figure below: VI. Sorting Method The sorting technology of brucite has experienced a development process from traditional hand sorting to mechanical sorting, and then to modern photoelectric sorting and artificial intelligence sorting. In the early days, due to the similar physical and chemical properties of brucite and associated minerals, traditional physical methods were difficult to achieve effective separation. Subsequently, the development of photoelectric mineral processing technology provided new possibilities for the sorting of brucite. By identifying the surface features of the ore such as color and texture, automatic sorting can be achieved to a certain extent. In recent years, with the development of artificial intelligence technology, intelligent sorting equipment can achieve more accurate sorting by learning and identifying the characteristics of the ore. At present, the sorting technology of brucite mainly includes the following aspects: Gravity separation and magnetic separation technology: physical separation is carried out by using the density and magnetic difference between brucite and impurities. Chemical purification method: synthesize brucite through chemical reaction, remove impurities and improve purity. Flotation separation technology: By adding specific adjusters, such as PCE-11 and PDP to strengthen the DDA system, the floatability difference between brucite and serpentine in the flotation process can be expanded to achieve effective separation. Intelligent identification and sorting technology: By introducing advanced image recognition technology and artificial intelligence algorithms, brucite can be efficiently and accurately graded, impurities can be removed, and the quality of the original ore can be improved. For example, the intelligent sorting equipment developed by Mingde Optoelectronics Technology Co., Ltd. can perform multi-dimensional feature recognition and sorting of ores in different size ranges through optoelectronic systems and artificial intelligence algorithms, greatly improving the accuracy and efficiency of sorting. AI Intelligent Mineral Sorting Machine Since its establishment in 2014, Hefei Mingde Optoelectronics Technology Co., Ltd. has been professionally researching, producing and selling mining optoelectronic sorting equipment. The staff went deep into mines across China to investigate the difficulties and pain points of mining sorting problems, and developed a batch of precise sorting optoelectronic ore sorting equipment. Among them, the AI ​​intelligent sorting machine has high sorting accuracy and large sorting volume, which is very popular in the market and has significant effects on the sorting application of brucite. In general, brucite sorting technology is developing rapidly towards higher efficiency, lower cost and more environmental protection. With the continuous improvement and promotion of technology, brucite is expected to play a greater role in industrial applications in the future.
  • Market Application and Processing of Mica Market Application and Processing of Mica Aug 23, 2024
    I. Overview Mica is an important industrial mineral with a layered structure and good physical and chemical properties, so it has a wide range of applications in many fields. There are many types of mica, including but not limited to muscovite, phlogopite, biotite, lepidolite, etc. Each type of mica has its own specific composition and properties, which determines their application in different fields. Mica belongs to the layered structure of the monoclinic system, and its chemical formula is KAl2(AlSi3O10)(OH)2. Its hardness is generally between 2.5-4, and its specific gravity is about 2.77-2.88g/cm³. Mica crystals are usually plate-shaped pseudo-hexagonal, transparent to translucent, with a very complete set of bottom cleavage, so they can be easily peeled into thin sheets. These thin sheets have significant elasticity and toughness, and can be bent to a certain extent without breaking easily. Mica minerals can be divided into three subgroups according to chemical composition and optical characteristics: muscovite subgroup, biotite-phlogopite subgroup and lepidolite subgroup. The color can range from colorless to white, and sometimes it can appear light yellow, light green or light red. Its luster is similar to glass or pearl, so it will have a similar effect when observed at a certain angle. In addition, mica has strong insulation and heat resistance, and can maintain stable performance under high temperature conditions, which makes it particularly important in the electronics and electrical industries. The main chemical components of mica include aluminum oxide (Al2O3), iron oxide (Fe2O3), potassium oxide (K2O), etc. In addition to these main elements, mica may also contain trace amounts of sodium, magnesium, iron, lithium, etc., as well as water and oxides. These chemical components give mica different physical properties, such as electrical insulation, heat resistance and chemical stability. II. Global distribution of mica The global distribution of mica mineral resources is relatively wide, and the main production areas include India: India is rich in mica mineral resources, especially in Bihar and Andhra Pradesh, where there are a large number of mica mines. Russia: Russia's mica resources are also very rich, especially in Siberia. China: China's mica resources are mainly distributed in Xinjiang, Sichuan, Inner Mongolia and other provinces, especially in Xinjiang Altai, Sichuan Danba and Inner Mongolia Tuguiwula. Madagascar: This African island country is also an important producer of mica, especially in its northern region. Brazil: Brazil's mica resources are mainly concentrated in the southeastern region. Argentina: Argentina also has certain mica mineral resources. III. Market Application The market application of mica is very wide, including but not limited to the electronics industry, building materials, automobile manufacturing, power equipment, cosmetics, fireproof materials, etc. The application of mica in these fields not only reflects its excellent physical and chemical properties, but also reflects its irreplaceable importance in modern industry and daily life. Electronic Industry In the electronics industry, mica is used as a high-frequency insulation material, especially in high-frequency circuits, where mica has a small dielectric loss and can effectively reduce signal loss. In addition, mica is also used to make printed circuit boards because it can withstand high temperatures without losing its insulation properties. Building Materials In the construction industry, mica is used as an efficient thermal insulation material, which can prevent energy loss caused by the temperature difference between the inside and outside of the building. Mica also provides additional fire protection because its layered structure can prevent the spread of flames. Automotive Manufacturing In automotive manufacturing, mica is used as part of the body material to improve the heat resistance and safety of the vehicle. Mica can also be used in brake pads to improve its heat resistance and reduce the heat generated by friction. Power Equipment In power equipment, mica is used as an insulating material, especially for transformers, cables and other power equipment. Mica's high heat resistance and chemical stability make it ideal for these applications. Cosmetics In the cosmetics industry, mica is used as a brightening ingredient to make products look more shiny. In addition, mica's flaky structure helps fill in skin lines and make the skin look smoother. Fireproof Materials In fireproof materials, mica is used as an effective thermal insulation and fire-resistant material. Mica's multi-layered structure can reflect heat back, thereby reducing the damage caused by fire. Ⅳ. Processing Process Complete mica processing involves a series of process flows from the mining, sorting, crushing, grinding of raw ore to the final mica products. This time we will briefly introduce the three links of crushing, sorting and grinding. Crushing The crushing of mica ore is an important link in the mica processing process, which directly affects the subsequent processing and application performance of mica. At present, the main crushing equipment on the market includes jaw crusher, roller crusher, cone crusher and other types, each of which has its specific application scenarios and advantages. The roller crusher plays an important role in the crushing of mica ore. It has the advantages of high crushing ratio, strong processing capacity, low maintenance cost, and precise control of finished product particle shape. By adjusting the roller spacing and crushing pressure, the discharge particle size can be effectively controlled to ensure the integrity of the mica sheet, which is conducive to improving the quality and application value of the product. Jaw crushers are often used in the crushing of lithium mica ore, especially for the initial crushing of large pieces of raw ore, crushing the ore to a suitable feed fineness, creating conditions for subsequent processing. Water jet mill crushing technology is a new type of mica crushing method. It cuts and crushes the material through high-speed jet water flow. It has the advantages of high crushing fineness, high precision, less dust generation and less wear on equipment. The crusher for mica production with a multi-stage crushing structure prepares for later processing through multi-angle crushing to improve work efficiency. The crushing process of mica ore usually includes the mining and screening of raw ore, crushing, screening and grading, and air separation. The specific process includes the use of a jaw crusher for primary crushing, followed by secondary crushing with a roller crusher, and finally a particle size screening by a screening machine to achieve the required particle size distribution. What needs to be paid attention to during the crushing process is the selection and parameter setting of the crushing equipment, as well as the screening and separation effect after crushing. For example, although the water jet mill crushing mica technology has many advantages, it also has the problems of high equipment cost and narrow crushing particle size range, and the mica mineral needs to be pretreated. Sorting The sorting technology of mica is a key link in the processing of mica ore, which is directly related to the quality and output of mica products. The methods of mica sorting mainly include hand sorting, gravity sorting, magnetic separation, flotation and photoelectric sorting. Hand sorting is the oldest and most direct sorting method, which is suitable for the sorting of large mica. Workers can directly pick out the separated mica on the mining face or ore pile. Gravity separation is a method of sorting using the difference in mineral density, which is suitable for coarse-grained mica. Commonly used gravity separation equipment includes jigs, shaking tables and spiral chutes. Magnetic separation is a method of sorting using the difference in mineral magnetic properties, which is mainly used to sort mica containing iron impurities. Magnetic separation equipment mainly includes dry magnetic separators and wet magnetic separators. Flotation is a method of sorting using the difference in physical and chemical properties of the mineral surface. It is currently the most widely used sorting method and is suitable for fine-grained mica. During the flotation process, attention should be paid to factors such as the selection and dosage of reagents, flotation time and concentration. Mica photoelectric sorting technology is a technology that uses optical and electrical properties to classify mica ores. This technology is mainly used in the field of ore processing. By identifying the differences in surface characteristics such as color, texture, and gloss between mica and other minerals, effective separation of mica is achieved. With the continuous advancement of science and technology, photoelectric sorting technology has been widely used in the mining field, especially in the beneficiation process of mica ores, showing significant advantages. Compared with other sorting methods, photoelectric sorting has the characteristics of high efficiency, low cost, environmental protection and high intelligence level. Single-layer AI Ore Sorting Machine In practical applications, photoelectric sorting technology has been proven to effectively improve the beneficiation efficiency of mica ore. For example, Mingde Optoelectronics' photoelectric sorting equipment has achieved high-precision identification and sorting on multiple metal and non-metallic minerals, including lithium mica, spodumene, barite, etc. Double-layer AI Ore Sorting Machine Hefei Mingde Optoelectronics Technology Co., Ltd. has introduced AI and big data technology in the field of photoelectric sorting. The AI intelligent sorting machine launched can accurately extract the surface characteristics of mica ore and realize the accurate sorting of ore and impurities. Grinding The grinding process is carried out after flotation is completed, with the purpose of further refining the mica after flotation to the required particle size. The grinding process usually includes two stages: primary grinding and secondary grinding. By adjusting the grinding medium and time, the fineness and uniformity of mica particles can be effectively controlled. There are two main methods for mica grinding: dry and wet, each of which has its own characteristics and applicable occasions. Dry grinding refers to grinding without adding any liquid. This method is simple to operate and has low cost, but due to the lack of lubrication, the heat generated by grinding may cause damage to the mica crystals, affecting its flaky structure and exfoliation. The equipment commonly used for dry grinding includes Raymond mills, ball mills, etc. Wet grinding is to add an appropriate amount of water or other liquids during the grinding process to protect the mica crystals through liquid lubrication and cooling, reduce heat accumulation, and thus protect the structure of the mica from being destroyed. Wet grinding can obtain mica powder with higher purity and better exfoliation, but it requires an additional drying step, and the equipment investment and energy consumption are relatively high. The processing quality of mica powder is directly related to the performance of the final product, so it is particularly important to choose a suitable mill. The selection of the mill needs to consider the characteristics of mica and the required fineness, purity and other requirements. Key points for selecting a mill Type of mill: According to the physical and chemical properties of mica, as well as the required fineness and purity, you can choose a high-pressure mill, a vertical mill, an ultrafine mill, etc. Grinding efficiency: An efficient mill can improve production efficiency and save energy costs. For example, some grinding mills can increase production by more than 40% through optimized design, while saving 30-40% of electricity consumption costs. Environmental performance: Modern grinding mills emphasize environmental performance and are equipped with pulse dust collectors and other equipment to achieve efficient dust removal and meet environmental protection and noise reduction requirements. Product specifications: The grinding mill should be able to produce mica powder specifications that meet the requirements, such as 325 mesh, 600 mesh and other different finenesses. Process adaptability: The grinding mill should be able to adapt to different grinding processes, such as dry and wet methods, and whether special processes such as acid treatment are required to improve the whiteness of mica powder. Specific equipment recommendation High-pressure grinding mill: Suitable for large-scale production, high-pressure suspension roller grinding mills and other models can be provided, suitable for processing mica ores with higher hardness. Vertical grinding mill: Suitable for large-scale production, with high efficiency and low energy consumption, the product particle size can be adjusted to meet different needs. Ultrafine grinding mill: Suitable for the preparation of ultrafine mica powder, can reach micron-level fineness, suitable for application scenarios with strict requirements on fineness. Airflow mill: suitable for dry grinding, crushing mica through high-speed airflow, suitable for preparing ultrafine powder. This is the introduction of mica. In short, as a multi-purpose mineral, mica is not only widely used in industry, but also plays an important role in scientific research and life. With the development of processing technology and different innovations of new technologies, the application prospects of mica will become broader and broader.
  • New Method for Gold Ore Sorting - Photoelectric Sorting New Method for Gold Ore Sorting - Photoelectric Sorting Aug 30, 2024
    Gold has always been a dazzling word. It is a symbol of wealth and power, and it also carries the profound connotation of culture, history and religion. At present, the main sources of gold are mining, recycling, sale and leasing by central banks and international organizations, and seabed mining. Mining has always been the most traditional and stable source of gold, accounting for about 70% of the entire gold market. Gold mines are widely distributed, and there are gold resources in many countries and regions around the world. According to the latest information, gold resources are mainly concentrated in Africa, Asia, South America, North America and Australia. Among them, Africa has the richest gold resources, and South Africa, Ghana, Senegal and other countries are the main gold production areas in Africa. Asia, especially China, Russia and India, also has a large amount of gold resources. Brazil, Peru and Colombia in South America are also important gold production areas. Canada and the United States in North America are the main gold production areas, and Australia is one of the most important gold resource countries in the world. Gold mining is a complex and technology-intensive process, involving multiple links from exploration, mining, beneficiation to smelting. Gold mining requires not only advanced equipment and technology, but also environmental protection and safety production requirements. Exploration is the first step in gold mining. The location and reserves of gold mines are determined through geological exploration technology. Preparatory work before mining includes infrastructure construction, such as building roads and setting up necessary facilities. There are two main mining methods: open-pit mining and underground mining. Open-pit mining is suitable for surface deposits, while underground mining is suitable for deeper ore bodies. During the mining process, commonly used equipment includes drilling machines, blasting equipment and mine cars. Ore dressing is to process the mined ore to extract the gold. Ore dressing processes include crushing, grinding, screening, gravity separation and flotation. Crushing and grinding are to reduce the particle size of the ore for subsequent processing; screening is to separate ores of different particle sizes; gravity separation and flotation are to separate gold and other minerals by physical and chemical methods. With the continuous advancement of science and technology, photoelectric separation has also become an important way of gold ore separation. It detects minerals through photoelectric sensors based on the optical properties of minerals, such as color, texture, gloss, shape, etc., to achieve mineral sorting. Photoelectric sorting technology is developed on the basis of traditional mineral processing technology. It has the advantages of high efficiency, environmental protection, and energy saving. The sorting equipment mainly consists of four parts. Feeding system: Through the vibrating feeder and crawler, the materials to be sorted are fed into the detection area of ​​the photoelectric system at a constant speed to ensure the stability of the sorting effect. Photoelectric system: It consists of a light source, a background plate, a sensor or an X-ray source, and a transmission plate. By collecting the comprehensive characteristics of the ore surface or the density difference, the ore is imaged in high definition, and the sensor is converted into an electrical signal to convey it to the electronic control system. Control system: Receives the electrical signal transmitted by the photoelectric system, identifies and analyzes it, and through model training and learning, intelligently identifies and compares good and bad ores, and realizes the identification and sorting of non-massive ore data. Sorting system: According to the instructions of the electronic control system, the defective products are blown into the defective product tank through the spray valve to achieve the sorting purpose. AI Ore Sorting Machine The advantage of photoelectric sorting technology for gold mines is that it can improve the efficiency and accuracy of mineral processing while reducing environmental pollution. Compared with traditional physical and chemical mineral processing, photoelectric mineral processing has lower energy consumption, and the cost of mineral processing per ton is about 1 yuan, which is much lower than the average cost of traditional methods. In addition, photoelectric mineral processing has zero pollution to the environment and is a greener way of mineral processing. Hefei Mingde Optoelectronics Technology Co., Ltd. has been focusing on the research and development, production and sales of photoelectric sorting equipment since its establishment. For gold mine sorting, the company currently has two main equipment solutions to choose from: for those gold mines with better dissociation and obvious surface characteristics of ore and impurities, the company's AI intelligent sorting machine can achieve effective sorting. For gold mines with good ores and impurity surface characteristics that are not obvious, the company has launched an X-ray intelligent sorting machine, which can combine the analysis of different densities of ore and impurities to achieve gold mine sorting. X-ray Intelligent Ore Sorting Machine Gold mines are an important natural resource, and their mining and processing have a profound impact on the national economy and the global market. With the advancement of science and technology and changes in market demand, gold mining and mineral processing technologies continue to develop and innovate to adapt to more efficient and environmentally friendly mining models. At the same time, as a metal with multiple functions, gold's position in the field of financial investment cannot be ignored. In the future, as the global economic landscape evolves, the gold mining industry and its related investment products will continue to play an important role on the international stage.
  • Market Application and Sorting of Industrial Silicon Market Application and Sorting of Industrial Silicon Aug 31, 2024
    Overview Industrial silicon, also known as metallic silicon or crystalline silicon, is an important industrial raw material. Its main component is silicon element, and the content is generally around 98%. In recent years, products containing 99.99% Si have appeared on the market. The rest of industrial silicon is mainly composed of impurities such as iron, aluminum, and calcium. Industrial silicon is divided into various specifications due to its different uses. Common grades include 553, 441, etc. These grades represent the maximum content of the main impurity elements iron, aluminum, and calcium in the product. Industrial silicon is widely used in many fields such as metallurgy, chemical industry, machinery, electrical appliances, and aviation. The chemical composition of industrial silicon mainly exists in the form of silicon element, and the content is usually above 98.7%. In addition, it also contains a small amount of impurities such as iron, aluminum, and calcium. The physical properties of industrial silicon are high hardness, high melting point, good heat resistance, and high resistivity. At the same time, it is non-conductive below 650°C and can be used as an insulating material; it begins to conduct electricity above 650°C, and its conductivity continues to increase with the increase of temperature. Global Industrial Silicon Production Pattern and Trade Flow At present, the global industrial silicon production capacity is concentrated in China, Brazil, Norway, the United States, Russia and other countries. Among them, Brazil and the United States have high-quality silicon ore resources, and Norway has abundant hydropower resources. The growth of China's industrial silicon production capacity is mainly contributed by domestic production capacity. China has an inherent production cost advantage and has been ranked first in the world for many years. China, Brazil, Norway and other countries are not only the main producers of industrial silicon, but also the main exporters. In 2021, China's industrial silicon (including 97 silicon and silicon) production accounted for 78% of the world, and Brazil (7%), Norway (6%), the United States (3%), France (3%) and other countries also have a certain output. The production of industrial silicon mainly adopts the submerged arc furnace method, which uses the arc energy between electrodes to melt the metal. It is the main process for the production of industrial silicon in China. During the production process, silica and carbonaceous reducing agent are first placed in the submerged arc furnace, and industrial silicon liquid is generated through high-temperature reduction reaction, and then block or granular industrial silicon is generated through casting, cooling, crushing and other steps. Market Application of Industrial Silicon Due to its special physical and chemical properties, industrial silicon has a wide range of applications in many fields. The following are the applications of industrial silicon in different fields: Photovoltaic industry Industrial silicon plays an important role in the photovoltaic industry. Polycrystalline silicon and monocrystalline silicon panels are the core components of solar photovoltaic power generation, and high-quality industrial silicon is an indispensable raw material in the preparation of these materials. Industrial silicon is purified through a series of processes to generate polycrystalline silicon and monocrystalline silicon for use in the photovoltaic industry and the electronics industry. Crystalline silicon cells are mainly used in solar rooftop power stations, commercial power stations and urban power stations with high land costs. They are the most technologically mature and widely used solar photovoltaic products, accounting for more than 80% of the world's photovoltaic market. Semiconductor industry In the field of semiconductor manufacturing, the high purity of industrial silicon ensures the reliability and stability of the semiconductor manufacturing process. Industrial silicon is the basic material of semiconductor chips, and the presence of any impurities will affect the quality and performance of the chips. Industrial silicon can produce high-quality silicon wafers through melting and crystal growth technology, which are used to manufacture electronic devices such as transistors and integrated circuits. Aluminum alloy manufacturing Industrial silicon plays a key role in the production process of aluminum alloys. As an alloying element, industrial silicon can adjust the properties of aluminum alloys by controlling the amount of addition, such as improving hardness, strength and wear resistance. In addition, industrial silicon can also improve the heat resistance and corrosion resistance of aluminum alloys, making them perform better in high temperature and corrosive environments. Aerospace Industrial silicon is used to manufacture high-performance structural materials in the aerospace field due to its characteristics such as light weight, high strength and high temperature stability. For example, in the outer shell material of spacecraft, industrial silicon can provide excellent resistance to thermal stress and can also resist high-speed wear. Industrial silicon can also be prepared into high-strength spacecraft parts, such as engine turbine blades. Chemical industry In the chemical industry, industrial silicon can be used as key raw materials such as catalysts, fillers and fire retardants. For example, catalysts can reduce the activation energy of the reaction, increase the reaction rate and selectivity; fillers can increase the contact area of ​​the reactants and improve the reaction efficiency; fire retardants can improve the fire resistance of the material and reduce the occurrence of fire accidents. New energy vehicles In the field of new energy vehicles, industrial silicon is widely used in the manufacture of key components such as batteries, motors and electronic controls. The high energy density and stability of industrial silicon make it an ideal material for new energy vehicle batteries. Construction and electronics Industrial silicon is also used in building sealing materials and waterproof materials, as well as in the field of electronics and electrical insulation. For example, silicone rubber has good high temperature resistance and is used to make medical supplies, high temperature resistant gaskets, etc. Sorting of Industrial Silicon As an important industrial raw material, the sorting technology of industrial silicon plays a vital role in ensuring product quality and improving resource utilization. The sorting technology of industrial silicon mainly includes two categories: physical methods and chemical methods. Physical methods are mainly based on the physical properties of minerals, such as density, conductivity, magnetism, etc. for sorting. Chemical methods use the differences in the chemical properties of minerals for separation. In practical applications, multiple methods are often combined to achieve the best sorting effect. Physical sorting technology Physical sorting technology mainly includes heavy medium beneficiation, flotation, magnetic separation and electrostatic separation. Heavy medium beneficiation uses the difference in mineral density to achieve separation; flotation relies on the chemical properties of the mineral surface for separation; magnetic separation uses the difference in the magnetic properties of minerals for sorting; and electrostatic separation uses the difference in the electrical properties of minerals for sorting. These methods have their own advantages and disadvantages and are suitable for different types of ores and sorting requirements. Chemical sorting technology Chemical sorting technology includes acid-base leaching, solvent extraction and other methods. These methods are mainly used to process ores that are difficult to effectively sort by physical methods, especially when the ore contains fine particles or film-like impurities that are difficult to separate by physical methods. New sorting technology In recent years, with the advancement of science and technology, new sorting technologies have gradually been applied to the sorting process of industrial silicon. For example, artificial intelligence sorting technology achieves higher-precision sorting by identifying the multi-dimensional three-dimensional characteristics of silicon slag and establishing a model. In addition, color sorting technology is also used in the purification of silica raw materials. By distinguishing the difference in color, sorting is carried out, which effectively improves the purity of silica. Since its establishment in 2014, Hefei Mingde Technology Co., Ltd. has been a high-tech enterprise dedicated to the research and development, design, production, sales and service of ore sorting equipment. The current main products include ore sorting machine, AI intelligent sorting machine, X-ray intelligent sorting machine, foreign body removal robot and mining automation production line, etc. AI Ore Sorting Machine Among them, the AI ​​intelligent sorting machine produced by the company can accurately extract the surface features of industrial silicon, conduct deep learning to form a model, and match the industrial silicon with the existing model in the subsequent sorting, so as to achieve accurate sorting. At present, the machine has been put into the actual production of industrial silicon and has received very good market response. Heavy Duty AI Ore Sorting Machine As an important industrial raw material, industrial silicon plays an indispensable role in modern industry. From its production process to application field, to market status and development trend, industrial silicon has demonstrated its unique value and broad development prospects. With the continuous advancement of technology and changes in market demand, the industrial silicon industry will continue to maintain a rapid development trend and make greater contributions to the development of human society.

оставить сообщение

оставить сообщение
Если вы заинтересованы в наших продуктах и хотите узнать больше деталей, пожалуйста, оставьте сообщение здесь, мы ответим вам, как только сможем.
Разместить

Дом

Товары

whatsApp

контакт